386 research outputs found

    Chronic neural probe for simultaneous recording of single-unit, multi-unit, and local field potential activity from multiple brain sites

    Get PDF
    Drug resistant focal epilepsy can be treated by resecting the epileptic focus requiring a precise focus localization using stereoelectroencephalography (SEEG) probes. As commercial SEEG probes offer only a limited spatial resolution, probes of higher channel count and design freedom enabling the incorporation of macro and microelectrodes would help increasing spatial resolution and thus open new perspectives for investigating mechanisms underlying focal epilepsy and its treatment. This work describes a new fabrication process for SEEG probes with materials and dimensions similar to clinical probes enabling recording single neuron activity at high spatial resolution. Polyimide is used as a biocompatible flexible substrate into which platinum electrodes and leads are... The resulting probe features match those of clinically approved devices. Tests in saline solution confirmed the probe stability and functionality. Probes were implanted into the brain of one monkey (Macaca mulatta), trained to perform different motor tasks. Suitable configurations including up to 128 electrode sites allow the recording of task-related neuronal signals. Probes with 32 and 64 electrode sites were implanted in the posterior parietal cortex. Local field potentials and multi-unit activity were recorded as early as one hour after implantation. Stable single-unit activity was achieved for up to 26 days after implantation of a 64-channel probe. All recorded signals showed modulation during task execution. With the novel probes it is possible to record stable biologically relevant data over a time span exceeding the usual time needed for epileptic focus localization in human patients. This is the first time that single units are recorded along cylindrical polyimide probes chronically implanted 22 mm deep into the brain of a monkey, which suggests the potential usefulness of this probe for human applications

    Electromechanical Reliability Testing of Three-Axial Silicon Force Sensors

    Get PDF
    This paper reports on the systematic electromechanical characterization of a new three-axial force sensor used in dimensional metrology of micro components. The siliconbased sensor system consists of piezoresistive mechanicalstress transducers integrated in thin membrane hinges supporting a suspended flexible cross structure. The mechanical behavior of the fragile micromechanical structure isanalyzed for both static and dynamic load cases. This work demonstrates that the silicon microstructure withstands static forces of 1.16N applied orthogonally to the front-side of the structure. A statistical Weibull analysis of the measured data shows that these values are significantly reduced if the normal force is applied to the back of the sensor. Improvements of the sensor system design for future development cycles are derived from the measurement results.Comment: Submitted on behalf of TIMA Editions (http://irevues.inist.fr/tima-editions

    Human monoclonal antibodies that neutralize anthrax toxin by inhibiting heptamer assembly

    Get PDF
    A panel of human anti-anthrax protective antigen IgG1 monoclonal antibodies were evaluated to determine the mechanism of toxin neutralization. AVP-22G12, AVP-1C6 and AVP-21D9 bound to the protective antigen with picomolar affinities to distinct non-overlapping linear epitopes. Two of the antibodies neutralized the anthrax toxin by completely inhibiting the protective antigen oligomer assembly process in vitro

    Human anti-anthrax protective antigen neutralizing monoclonal antibodies derived from donors vaccinated with anthrax vaccine adsorbed

    Get PDF
    BACKGROUND: Potent anthrax toxin neutralizing human monoclonal antibodies were generated from peripheral blood lymphocytes obtained from Anthrax Vaccine Adsorbed (AVA) immune donors. The anti-anthrax toxin human monoclonal antibodies were evaluated for neutralization of anthrax lethal toxin in vivo in the Fisher 344 rat bolus toxin challenge model. METHODS: Human peripheral blood lymphocytes from AVA immunized donors were engrafted into severe combined immunodeficient (SCID) mice. Vaccination with anthrax protective antigen and lethal factor produced a significant increase in antigen specific human IgG in the mouse serum. The antibody producing lymphocytes were immortalized by hybridoma formation. The genes encoding the protective antibodies were rescued and stable cell lines expressing full-length human immunoglobulin were established. The antibodies were characterized by; (1) surface plasmon resonance; (2) inhibition of toxin in an in vitro mouse macrophage cell line protection assay and (3) in vivo in a Fischer 344 bolus lethal toxin challenge model. RESULTS: The range of antibodies generated were diverse with evidence of extensive hyper mutation, and all were of very high affinity for PA83~1 × 10(-10-11)M. Moreover all the antibodies were potent inhibitors of anthrax lethal toxin in vitro. A single IV dose of AVP-21D9 or AVP-22G12 was found to confer full protection with as little as 0.5× (AVP-21D9) and 1× (AVP-22G12) molar equivalence relative to the anthrax toxin in the rat challenge prophylaxis model. CONCLUSION: Here we describe a powerful technology to capture the recall antibody response to AVA vaccination and provide detailed molecular characterization of the protective human monoclonal antibodies. AVP-21D9, AVP-22G12 and AVP-1C6 protect rats from anthrax lethal toxin at low dose. Aglycosylated versions of the most potent antibodies are also protective in vivo, suggesting that lethal toxin neutralization is not Fc effector mediated. The protective effect of AVP-21D9 persists for at least one week in rats. These potent fully human anti-PA toxin-neutralizing antibodies are attractive candidates for prophylaxis and/or treatment against Anthrax Class A bioterrorism toxins

    Histological assessment of a chronically implanted cylindrically-shaped, polymer-based neural probe in the monkey

    Get PDF
    Objective. Previous studies demonstrated the possibility to fabricate stereo-electroencephalography probes with high channel count and great design freedom, which incorporate macro-electrodes as well as micro-electrodes offering potential benefits for the pre-surgical evaluation of drug resistant epileptic patients. These new polyimide probes allowed to record local field potentials, multi- and single-unit activity (SUA) in the macaque monkey as early as 1 h after implantation, and yielded stable SUA for up to 26 d after implantation. The findings opened new perspectives for investigating mechanisms underlying focal epilepsy and its treatment, but before moving to possible human application, safety data are needed. In the present study we evaluate the tissue response of this new neural interface by assessing post-mortem the reaction of brain tissue along and around the probe implantation site. Approach. Three probes were implanted, independently, in the brain of one monkey (Macaca mulatta) at different times. We used specific immunostaining methods for visualizing neuronal cells and astrocytes, for measuring the extent of damage caused by the probe and for relating it with the implantation time. Main results. The size of the region where neurons cannot be detected did not exceed the size of the probe, indicating that a complete loss of neuronal cells is only present where the probe was physically positioned in the brain. Furthermore, around the probe shank, we observed a slightly reduced number of neurons within a radius of 50 µm and a modest increase in the number of astrocytes within 100 µm. Significance. In the light of previous electrophysiological findings, the present data suggest the potential usefulness and safety of this probe for human applications

    Possibilities of alternative generation II biotests at Artemia

    Get PDF
    The meaning of alternative biotests is described and discussed. The paper also deals with the possible application of the developmental studies of the sea Artemia franciscana nauplinus. Five-day biotests including the validation criteria are described. The possibilities of the biotests are very wide. Additionally to the standard applications in ecotoxicology, there is a possibility of modelling pharmacological experiments or monitoring the effects of ionizing radiation and the interaction with other chemicals

    Oscillatory activity in the medial prefrontal cortex and nucleus accumbens correlates with impulsivity and reward outcome.

    Get PDF
    Actions expressed prematurely without regard for their consequences are considered impulsive. Such behaviour is governed by a network of brain regions including the prefrontal cortex (PFC) and nucleus accumbens (NAcb) and is prevalent in disorders including attention deficit hyperactivity disorder (ADHD) and drug addiction. However, little is known of the relationship between neural activity in these regions and specific forms of impulsive behaviour. In the present study we investigated local field potential (LFP) oscillations in distinct sub-regions of the PFC and NAcb on a 5-choice serial reaction time task (5-CSRTT), which measures sustained, spatially-divided visual attention and action restraint. The main findings show that power in gamma frequency (50-60 Hz) LFP oscillations transiently increases in the PFC and NAcb during both the anticipation of a cue signalling the spatial location of a nose-poke response and again following correct responses. Gamma oscillations were coupled to low-frequency delta oscillations in both regions; this coupling strengthened specifically when an error response was made. Theta (7-9 Hz) LFP power in the PFC and NAcb increased during the waiting period and was also related to response outcome. Additionally, both gamma and theta power were significantly affected by upcoming premature responses as rats waited for the visual cue to respond. In a subgroup of rats showing persistently high levels of impulsivity we found that impulsivity was associated with increased error signals following a nose-poke response, as well as reduced signals of previous trial outcome during the waiting period. Collectively, these in-vivo neurophysiological findings further implicate the PFC and NAcb in anticipatory impulsive responses and provide evidence that abnormalities in the encoding of rewarding outcomes may underlie trait-like impulsive behaviour.RCUK, Wellcome, OtherThis is the final version of the article. It first appeared at http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0111300

    Multiplexed, High Density Electrophysiology with Nanofabricated Neural Probes

    Get PDF
    Extracellular electrode arrays can reveal the neuronal network correlates of behavior with single-cell, single-spike, and sub-millisecond resolution. However, implantable electrodes are inherently invasive, and efforts to scale up the number and density of recording sites must compromise on device size in order to connect the electrodes. Here, we report on silicon-based neural probes employing nanofabricated, high-density electrical leads. Furthermore, we address the challenge of reading out multichannel data with an application-specific integrated circuit (ASIC) performing signal amplification, band-pass filtering, and multiplexing functions. We demonstrate high spatial resolution extracellular measurements with a fully integrated, low noise 64-channel system weighing just 330 mg. The on-chip multiplexers make possible recordings with substantially fewer external wires than the number of input channels. By combining nanofabricated probes with ASICs we have implemented a system for performing large-scale, high-density electrophysiology in small, freely behaving animals that is both minimally invasive and highly scalable

    Disordered Eating among Preadolescent Boys and Girls: The Relationship with Child and Maternal Variables

    Get PDF
    Objective: (i) To analyze the eating behaviors and body satisfaction of boys and girls and to examine their mothers’ perceptions of these two domains; and (ii) to evaluate eating problem predictors using child body mass index (BMI), self-esteem, and body satisfaction as well as maternal BMI, eating problems, and satisfaction with their child’s body. The participants included 111 children (54.1% girls aged between 9 and 12 years old) and their mothers. Assessment measures included the Child Eating Attitude Test, the Self-Perception Profile for Children, the Eating Disorders Questionnaire, and the Child Eating Behavior Questionnaire. Child and maternal measures also included BMI and Collins Figure Drawings. Results: (i) No association between child and maternal BMI for either sex was found; (ii) no difference was found between boys and girls with regard to eating behavior; (iii) most children revealed a preference for an ideal body image over their actual body image; (iv) most mothers preferred thinner bodies for their children; (v) greater BMI was related to higher body dissatisfaction; and (vi) child BMI and dissatisfaction with body image predicted eating disturbances in boys, whereas self-esteem, maternal BMI, and eating behavior predicted them in girls. Discussion: Maternal eating problems and BMI were related to female eating problems only
    corecore